ArMY ReseArRcH LABORATORY

A Primary Server for Organizational
| Identifiers

by Frederick S. Brundick and George W. Hartwig, Jr.

ARL-TR-2530 | June 2001

Approved for public release; distribution is unlimited.

20010723 171

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-TR-2530 June 2001

A Primary Server for Organizational
Identifiers

Frederick S. Brundick and George W. Hartwig, Jr.

Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.
St USSP Sy e ———————— Y —————————————————————— e —————— S ———————

Abstract

This report describes the design and implementation of an organizational
identifier server (OIS). This server is the top level of a hierarchy to assign and
maintain a list of unique identifiers for Department of Defense (DOD)
organizations. These OrglD numbers are designed to provide a uniform means
for digital computers to reference DOD organizations. The OIS accepts requests
for OrglDs from organization servers (OS) and generates sets of unique numbers
in response. The OIS also acts as a directory for assigned numbers. OS programs
may query the OIS as to who owns a particular OrgID, and the OIS will respond
with the name of the OS that was assigned the particular OrgID and its current
status.

i

A cknowledgments

We would like to acknowledge Dr. Sam Chamberlain for creating the original concept of
organizational identifiers and serving as a liaison between the authors and the rest of the
world. We also wish to thank Dr. Lisa Marvel for taking the time to review this document.

1l

INTENTIONALLY LEFT BLANK.

v

Table of Contents

Page

Acknowledgments L 111
List of Figures. o o i e vii
List of Tables v v o e e e e e e e e e e e e e e e e e vii

1. Introduction e e e e e e e e e 1
2. Server Architecture e e e e e e e e e e e 2
3. Data Structures v v vt e e e e e e e e e e e e e e e e e e 3
3.1 OrgID Data Tables i 3
3.2 Table Values« . o o o o e e e e e e e e e e 4
4, Interface ISSUES . . . v v v v e 5
4.1 The OIS to Informix Interface o v v i i v i i e 5
4.1.1 LoggingInand Qut 6
4.1.2 Getting New OrgIDs i 6
4.1.3 - Changing the Status of OrgIDs oo oo 6
4.1.4 Obtaining Information About an OrgID 7
4.1.5 Miscellaneous Functions v v v v i i e e e e e e e e 7
4.2 The OISto OS Interface o i i i i e e e e e e e e 8
4.2.1 The PKG Library i ittt e et e e e e 8
4.2.2 PKG Interface Definition« v i i i e 9
4.2.3 The PKG Handling Routines 11
4.2.4 The API Library Functions 13
4.2.5 OISto OS Messages . . . v v v v v v v it e ettt e e e e e 16
5. Security Issues e e e e 17
5.1 Network Transaction Security 18
5.2 Data Storage Security Lo e 18
6. References o 0 v i e e e e e e e e e e e e e 19
Appendix: Sample Transaction Data 21
List of Abbreviations e e e e e e e e e e e 25
Distribution List e e e e e e e e e e e 27
Report Documentation Pageo oL 33

INTENTIONALLY LEFT BLANK.

vi

List of Figures

Figure Page
1. Hierarchy for OrgID Distribution 1
2. OrgIDQueryProcess 2
3. Basic Architecture of the OrgID Server System 2

List of Tables

Table Page
1. Assigned OrgID Definition 3
2. OrgID Free List Definition 3
3. Organization Information. 4
4. OrgID Account Information 4
5. OrglD Transaction Log o o oo i 4
6. Transaction Log Command Codes 5
A-1 Sample Account Data. o e 23
A-2 Actual Transaction Log o o o 24

vii

INTENTIONALLY LEFT BLANK.

viil

1. Introduction

With the current push to digitize the Army and ultimately the Department of Defense,
one of the problems to be solved is how to identify everyone. Every unit has a name that
conveys a large amount of information—such as the echelon, unit type, and who they are
assigned to (i.e., D Company, TF 1-35th Armor—to human beings). However, these names
are difficult for computers to interpret and pass around. It would make sense to identify
units with a number that the ubiquitous computer can easily manipulate and exchange with
other computers, much like bar codes are used to keep track of physical items. A translation
back into military nomenclature could always be done at any time (computers excel at such
tasks). Chamberlain [1] has developed a proposal to use unsigned integers as organizational
identifiers (OrgID). 32 bits* will allow for 4.3 billion organizations. A problem with using
such numbers is how to keep track of them. As proposed by Chamberlain, this bookkeeping
is done on two levels and is shown in Figure 1. At the top of this figure is an OrgID Server

OrgID Server
[
\i 1 y 1}
ARMY NAVY AIR FORCE Other
Organizational Organizational Organizational XY Organizational
Server Server Server Servers

Figure 1. Hierarchy for OrgID Distribution.

(OIS) that serves as the number generator. This program generates the OrgIlDs and keeps
track of the Organization Server (OS) they are assigned to and their status. The second level
is composed of the OSs that keep track of how particular organizations assign the OrglDs
to their various components (i.e., Army Server, Navy Server, etc).

If a user in the field wants to know the owner of a particular OrglD number, he would
first query his local OS. It is most likely that this OS would know the unit corresponding to
the number in question. If not, the OS program would then query the OIS. The OIS would
respond with the OS that had been assigned the number and indicate whether the OrgID was
listed as ACTIVE or INACTIVE. The user’s OS would then query the named OS. Depending
on security considerations and organizational policy, that OS could choose to respond or not.
This process is shown graphically in Figure 2. By designing the process in this manner, each
OS maintains control of the unit information for which they are responsible.

This report describes the design and implementation of the OIS and the library routines
that provide the interface between the OIS and OS. Data replication between multiple OIS
machines will be implemented using tools provided by the database vendor and therefore is
not discussed.

*32 bits is the size of an unsigned integer on almost all popular computers today.

OrgID Server

1. Who is 83483727

2. USAF,ACTIVE

i 9
ARMY 3. Who is 83483727 .| AIR FORCE
Organizational Organizational
Server - Server
4. 389th FS/366th Wing

Figure 2. OrgID Query Process

2. Server Architecture

The OIS is composed of three major components: a relational database mandgement
system (RDBMS), a network front end, and a system console. To provide a backup capability,

the OIS system is comprised of two OISs running on separate computers (see Figure 3). The

/ INFORMIX NETWORK *

FRONT END

, INFORMIX NETWORK "
DATABASE FRONT END
1 ‘\
. CONSOLE|

-

-
-

PRIMARY ORG_ID SERVER

SECONDARY ORG_ID SERVER
Figure 3. Basic Architecture of the OrgID Server System.

relational database management system selected for this work is Informix. The RDBMS

provides a permanent data store and also replicates all OrgID data to a secondary server
that is kept in reserve in case problems occur with the primary server.

The network front-end provides communications between the OrgID server and the OS
client. It also provides for limited authentication and data security. The console allows a
Database Administrator (DBA) to access the program to monitor the state of the database,

create new user accounts, and perform system maintenance operations. To keep the system
as flexible and portable as possible, a graphical user interface was not constructed.

3. Data Structures

The data stored by the RDBMS may be partitioned into two parts: (1) the data describing
OrglDs and their use; and (2) data used by the OIS program to keep track of user access
information and connection data.

3.1 OrgID Data Tables

OrgID data is maintained in two tables. The first is a table of currently assigned OrglIDs
(orgid) and is shown in Table 1. The second is a free list of unassigned numbers (freeblocks),
as shown in Table 2. Both tables are designed to minimize the actual storage required.

Table 1. Assigned OrglID Definition

Name Type | Definition

idnum integer | The OrgID number

orgcode | integer | The code number of the OS this number is assigned to
status char | The current status (Active, Inactive)

reqdate date | Date this number was assigned to an OS

moddate | date | Date this number was activated/deactivated

Table 2. OrgID Free List Definition

Name | Type | Definition
start | integer | First available number in block
end | integer | Last available number in block

In addition to the actual OrglDs being used, tables are needed to provide the mapping
between organizations and their code numbers (affiliation), and information about the users
who are authorized to use the OIS (account). Tables 3 and 4 show the fields and how they
are used.*

A transaction table (translog) is maintained to record usage of the OIS, as shown in
Table 5. The recno field is a simple counter used to provide an audit trail of the exact

*Additional fields could be added to the tables if desired.

Table 3. Organization Information

Name Type | Definition
orgcode | integer | Code number of the OS
orgname | string | Name of the OS

Table 4. OrgID Account Information

Name Type | Definition ,

username string | Account name

passwd string | Password for this account

orgcode integer | Code number of the OS the account is for

address string | Contact information

phone string | More contact information

maxoidtrans | integer | Maximum number of requested OrgIDs per transaction
maxoidday | integer | Maximum number of requested OrgIDs per day
maxoiduser | integer | Maximum number of requested OrgIDs for this account

sequence of events. Two of the fields—success and number—contain different types of values
depending on the command. The success codes are returned to the client program via the
functions in the application program interface (API) and are explained in Section 4.2.4.
Sample data are shown in the Appendix.

Table 5. OrgID Transaction Log

Name Type | Definition

recno integer | Transaction number

username | string | Account name

command | char | Command that was issued

success integer | Success or failure code number
cmddate date | Date command was given

number | integer | Varies depending on the command

3.2 Table Values

Code values are used in the tables to conserve disk space in accordance with database
constraints. The simplest of these are the single-character status codes in the orgid table,
which are currently ‘A’ for active and ‘I’ for inactive. The translog table uses both character

codes and numerical codes. These numbers provide more information than a simple pass/fail
value, although the main concern is whether or not a command succeeded. The codes used

for the commands and the meaning of the number stored in the number field are shown in
Table 6.

Table 6. Transaction Log Command Codes

Code | Definition Number
L | Login UNIX date and time
T | Logout UNIX date and time
X | Lost Connection UNIX date and time
R | Request for OrglDs Desired number of OrglDs
A | Change OrgID status to Active | Number of OrgIDs to change
I | Change OrgID status to Inactive | Number of OrgIDs to change
F | Free (delete) OrgID Number of OrglIDs to free
Q | Query OrgID that was queried

4. Interface Issues

There are two major interfaces that the OIS must support. The OIS must exchange
information with the Informix RDBMS and the various OS client programs.

4.1 The OIS to Informix Interface

Informix supports structured query language (SQL) and a variant developed for use
within C programs called embedded SQL for C (ESQL/C). Since the OIS is written in C,
it communicates with the Informix RDBMS via ESQL/C. To implement this interface, SQL
statements are combined with C source in a file, along with special Informix keywords using
SQL syntax. A preprocessor converts this ESQL/C file into a normal C file, with the SQL
statements being replaced by calls to C functions that are part of the ESQL/C library. The
resulting C file is then compiled by an ordinary C compiler and linked with the libraries
supplied by Informix. ' '

The use of ESQL/C combines the power of SQL with the flexibility of C. For example, an
SQL SELECT statement normally returns a table of records. With ESQL/C we may write
a loop which uses C code to sequentially manipulate each record that is returned from the
query. We also have the ability to use conditional flow control statements, such as traditional
“if-then-else” constructs, and to perform complex calculations.

4.1.1 Logging In and Out

Since the OIS program runs continuously while waiting for new connections from organi-
zation servers, it is not efficient for the OIS to remain connected to the RDBMS because of
Informix system overhead. When a new OS client contacts the OIS, the function iOpenDb is
called, and iCloseDb is invoked when the OS logs out. A counter keeps track of the number
of connected OS programs. If the counter is zero when iOpenDb is called, a connection is
made to the RDBMS. Likewise, iCloseDb breaks the connection when the counter falls to
zero (i.e., the last OS program logs out).

The OIS must validate an OS’s credentials before allowing him to submit further requests
to the OIS. The function get_user_info is given the name of the client attempting to login. It
executes a SELECT command on the account table to get the client’s password, organization,
and request limits (limits are detailed in the following section). If the client is found in the
table, his information is returned in a data structure; otherwise, a NULL value is returned
and the connection is terminated.

4.1.2 Getting New OrglIDs

To prevent a user from requesting an inordinately large number of OrglIDs, each user has
a transaction limit (see Table 4). There is also a daily limit to prevent a user from trying
to bypass the transaction limit by submitting many smaller requests. Finally, a third limit
specifies the total number of OrglDs the user may own. The limits are defined for each
account, so everyone does not necessarily have the same limits, and the value of any limit
may be set to unlimited. If a limit is exceeded, the appropriate error code is returned.

The function that provides a user with new OrglIDs, db_get, is the most complicated in
the ESQL/C portion of the OIS. Before it processes the user’s request, it first makes sure
that the user is within his limits.

A table of available OrglDs, called freeblocks, contains a pair of numbers in each record
indicating a range of unused OrgIDs. The function scans the freeblocks table (using a SELECT
loop) and saves information about each block until it has accumulated the desired number of
OrglDs. It inserts a new record for each OrgID in the orgid table, recording the code number
of the organization that requested the OrgID, the status (inactive), and the current date.
The freeblocks table is also updated. If all the numbers in a block are used, that block’s
record is deleted; if part of a block is used, the starting value of the block is updated to
reflect the reduced block size.

After both database tables have been updated, the OrgIDs are returned as a string of
number ranges to be passed on to the user.

4.1.3 Changing the Status of OrgIDs

The OIS retains information about the OrgIDs that have been given out. When an
organization assigns its OrglDs, it notifies the OIS and reports the OrgIDs that are now in

use. This is handled by the function db_set_status. The current codes are ‘A’ to activate the
OrglDs, ‘I’ to deactivate them, and ‘F’ to free them.

An OrgID may be deactivated. One such case occurs when it has been assigned to a
temporary unit such as a joint task force. When the OrgID is unassigned, the OIS must be
notified that the number is now inactive. The OS may later reassign the OrgID to another
unit, at which time it would tell the OIS to activate the number again.

If an organization decides it no longer needs various OrglIDs, it may free them. This
is much more than merely deactivating the numbers. The organization is giving up the
ownership of the OrglDs, and they are deleted from the orgid table and returned to the
freeblocks table.

Before the OIS changes the status of a group of OrglDs, it first makes sure they are all in
the orgid table (i.e., they have been assigned) and that they belong to the organization which
submitted the command. If any OrglD fails to meet these conditions, the entire command
is ignored and an error code is returned. The date the status was modified is recorded in
the moddate field in the orgid table. The only exception is when the OrgID is freed, because
in that case the record is deleted from the table. It is not an error to attempt to change
the status of an OrglID to its current status. In other words, if the user asks for an active
OrgID’s status to be set to “active,” the command will be executed, even though only the
moddate field will be changed.

4.1.4 Obtaining Information About an OrgID

A user may wish to obtain information about a particular OrgID. The user may submit
that OrgID to the OIS and receive the OS that owns the OrgID and its current status. The
function db_get_owner runs a SELECT on the orgid table, returning an error code if the
OrglID has not been assigned.

4.1.5 Miscellaneous Functions

Every command submitted to the OIS is recorded in the table translog (see Table 5),
regardless of the command’s success or failure. The transaction record is stored by the func-
tion record_transaction. The command codes and other details are explained in Section 3.1,
and the success codes are enumerated in Section 4.2.4.

Two functions exist for debugging purposes, iShowFree and iShowCount. The function
iShowFree prints the freeblocks table. Summary information for the orgid table is generated
by iShowCount, which prints the number of OrgIDs owned by each organization, separated
into active and inactive.

4.2 The OIS to OS Interface

The OIS to OS interface has several parts. The PKG software handles the details of
the network connections. Above this are a set of OIS routines that manage PKG input and
output, and finally there is a library of functions that comprises the API and are called
directly by the OS programs.

To assure portability, versions of the PKG, DES, and API libraries have been compiled
and executed on the following machine/OS combinations: Sun Ultra 1/Solaris 2.6 and 2.7,
Windows NT, and Windows 98. Under Solaris and Windows NT, the compilation was
performed by the GNU compiler, gcc. Microsoft’s Visual C++ compiler was used for the
Windows 98 version.

4.2.1 The PKG Library

The PKG software [2, 3] was developed by Mike Muuss, Charles Kennedy, and Phillip
Dykstra at BRL.* It implements a message passing interface for managing client/server
communications using TCP/IP connections. Server actions include initialization, client con-
nection, and client request servicing. Client actions include making the server request, reply
processing, possible connection negotiation, and data transfer processing. Security is not
considered within the PKG routines.

Once the connection is established, it may be used for either full-duplex asynchronous
or for synchronous query/response transactions. These transactions are multiplexed on the
server side within the PKG interface. Message multiplexing is handled by prefixing a header
used to relate client requests to server responses. At the receiving end, the user messages
are passed to user-defined routines that provide the PKG-user interface. The calling of these
user-defined routines is specified in a user-supplied table. The structure of this table is

struct pkg_switch {
unsigned short pks_type; /* Type code */
void (*pks_handler) (); /* Message Handler */
char *pks_title; /* Description of message type */

};
and the actual table used in the OIS is

struct pkg switch pkg.switch[] = {
{ OIS_ERROR, ois_unk, "Error Message" },
{ OIS_LOGIN, oislogin, "Login Message" },
{ OISREQ, ois_req, "Idreq Message" }s
{ DISRESP, ois.resp, "Id Response" },
{ OIS.LOGOUT,ois logout, "Logout Message" }

};

*The Ballistic Research Laboratory that was incorporated into the Army Research Laboratory in 1992.

The first entry on each line is a PKG message identifier. The second is a pointer to a
function that will be called when a message of that type is received; the third is a string used
for identification purposes in error messages and data logging. The functions referenced in
this table are described in more detail in the next section.

4.2.2 PKG Interface Definition

The interface to PKG software in the OIS program is via the following calls

struct pkg-conn *pkg open (host, service, protocol, uname, passwd,
pkg-switch, errlog)

char *host /* Name of host to connect to */

char *service /* The port to use for this connection */

char *protocol /* The protocol to use, TCP always */

char *uname /* A username, always ignored here */

char *passwd /* A user password, always ignored here */

struct pkgswitch *pkg_switch /* The structure relating
message types and handler routines */

void (*errlog)() /* A filename for logging errors */

returns: pointer to a pkg.conn structure

Pkg_open is called by a client to make a connection to a server running on the
named host. The return value is the connection handle. Protocol, username, and
password are optional, with username and password not being used.

void pkg-close (ptr_to_conn)
struct pkg.conn *ptr_to_conn /* The connection to close */
returns: none

Pkg_close is called by either the client or server to gracefully close a connection.

int pkg.permserver (service, protocol, backlog)

char *service /* The port to use for this connection */
char *protocol /* The protocol to use, TCP always */
int backlog /* Passed to listen(3n) maximum pending

connections queue */
returns: file descriptor

Pkg_permserver is called by the server to set the service port and to listen for data
on the port that is bound to the socket. The return value is the file descriptor of
the socket.

struct pkg.conn *pkg getclient (listenfile desc, pkg_switch,
errlog, nodelayflag)
int listenfile.desc /* File descriptor for connections */

struct pkg.switch pkg._switch /* The structure relating
message types and handler routines */

void (*errlog)() /* Pointer to error logging routine */

int nodelay flag /* Flag to use polling or blocking */

returns: pointer to the pkg comnection block, NULL or ERROR.

Pkg_getclient is used to accept connections from clients. If possible, the connec-
tion request from the client is accepted, a pkg_connection block is created, and a
pointer to it is returned to the server. The server may request nonblocked service
by setting the nodelay_flag to TRUE.

int pkg.get (ptr_to_conn)

struct pkg.conn *ptr_to_conn /* The connection to get from */
returns: message-arrived, more.data_coming or ERROR.

Pkg_get waits until a message header is received and calls the user-specified mes-
sage handler for that message type. This routine should be called by a program
whenever there is data waiting on a connection and the program is not otherwise
waiting on a specific message type. The routine will return directly to the caller
if no header is available, or if only a partial message is received; otherwise, it
calls the user-specified message type handler.

int pkg_send (message_type, data buff, buff_len, ptr_to_conn)

int message._type /* Type of message from pkg switch */
char *data buff /* The data to be sent */

int buff len /* The number of bytes to be sent */

struct pkg-conn *ptr_to_conn /* The client to send to */

returns: number of bytes sent or ERROR

Pkg send constructs a message header for the data buffer and transmits it on
the connection. If only part of the message can be sent, the actual number of
bytes transmitted is returned. Any data in the stream buffer is first flushed.
If the stream buffer needs flushing, the message is less than MAXQLEN (currently
512) bytes long, and sufficient room is left in the stream buffer, this message gets
“piggybacked” on by copying it to the buffer before flushing. If available, writev
is used to send the header and data with one system call.

char *pkg bwaitfor (message_type, ptr.to_conn)
int message_type /* Type of message from pkg.switch */
struct pkg_conn *ptr_to_conn /* Connection to wait on */
returns: ptr_to_buffer or ERROR

10

Pkg_bwaitfor does a blocking read on the connection until a message of message._type
is received. Asynchronous messages and messages of other types are processed

while this routine waits. The message is returned in a newly allocated buffer that
the caller must free.

4.2.3 The PKG Handling Routines

On the server side, these routines interact with the PKG routines described previously
and take care of details such as encryption and message logging. Since they are called from
within the PKG software, they have no return values. Proc_incoming is not a message
handling routine, but calls the PKG routines to process pending data.

void dropclient (i)
int i

/* Index into list of clients */
returns: none

This routine closes the connection to a client by cleaning this entry in the

ACTIVE_.CONN array and calling pkg_close.

void ois_do.login (pc, buf)

struct pkg conn *pc /* A pointer to the current
pkg.conn structure */
unsigned char *buf - /* Buffer containing the assembled

message. Length and type of message may
be determined from the pkg _conn structure

(pc->pkclen, pc->pkc.type) */
returns: none

After the PKG connection is made, this routine is invoked by a LOGIN message.
It handles the password look up and initializes everything that needs it. (NOTE:

We may need to drop back and remove LOGIN and LOGOUT as special message
types if they take too long to execute.)

void ois_logout (pc, buf)
struct pkg_conn *pc /* A pointer to the current
pkg _conn structure */
/* Buffer containing the assembled
message. Length and type of message may
be determined from the pkg.conn structure
(pc->pkclen, pc->pkc_type) */

unsigned char *buf

returns: none

11

This PKG switch routine is called when a LOGOUT type of message is received. It

frees the ACTIVE_.CONN structure, drops the PKG link, and logs the fact. See
LOGIN comments for possible future action.

void oisreq (pc, buf)

struct pkg_conn *pc /* A pointer to the current

pkg-conn structure */

/* Buffer containing the assembled
message. Length and type of message may
be determined from the pkg.conn structure
(pc->pkc.len, pc->pkc_type) */

unsigned char *buf

returns: none

This handler routine queues incoming client requests for processing at a later
time.

void ois_resp (pc, buf)

struct pkg.conn *pc /* A pointer to the current

pkg_conn structure */

/* Buffer containing the assembled
message. Length and type of message may
be determined from the pkg.conn structure
(pc->pkc_len, pc->pkc_type) */

unsigned char *buf

returns: none

This routine is used on the client side to accept responses to 0IS_REQ messages.
It should never be called on the server side.

void ois_unk (pc, buf)

struct pkg_conn *pc /* A pointer to the current

pkg-conn structure */
/* Buffer containing the assembled
message. Length and type of message may

be determined from the pkg._conn structure
(pc->pkclen, pc->pkc_type) */

unsigned char *buf

returns: none

This routine is called by the PKG software when a message of unknown type is
received. It simply logs the fact and throws away the buffer.

12

int proc.incoming (£d)
int fd /* File descriptor for this connection,
also index into ACTIVECONN array */
returns:
< 0 for errors
0 no errors no messages
> 0 number of messages processed

This function reads and processes any data pending on the furnished file de-
scriptor. It returns less than 0 if it was not given a valid file descriptor for the
package connection, or if any part of the process fails. It returns 0 if there was
data but not a complete message. Return values greater than 0 are the number
of messages processed.

4.2.4 The API Library Functions

The API library of functions is supplied to the Organization Server developer to perform
the details of communication with the OIS and to provide a set of functions allowing the OS
to interact with the OIS. Currently the following actions are defined:

int oislogin (host.p, host.s, uname, password)

char *host.p; /* Name of OrgID Server primary host */
char *host.s; /* Name of OrgID Server secondary host */
char *uname; /* Name of 0S or other approved user */
char *password; /* Approved passwd */

returns:

BAD_ARGUMENT - One of the input arguments didn’t

make sense. Generally this is a NULL pointer

or a variable being out of reasonable range.

PKG SEND_FAILURE - PKG software failed for the
specified connection

PKGWAIT FAILURE ~ PKG software failed to get an
expected response on the open connection

LOGIN.OK.P - Login to the primary server was successful
LOGIN.OK.S - Login to the primary server failed but

a successful login to the secondary server was completed
PKG_CONNECT FAIL ~ PKG software failed to connect

to the specified host

LOGIN.FAIL - PKG connection was established but

login failed for an unknown reason

BAD_USER.NAME - PKG connection was established but
login failed because of an unrecognized username
BAD_USER PW - PKG connection was established but

login failed because of an incorrect password

13

This function creates the connection to the OIS and attempts to log in using
the approved username and password. Return values indicate the status of the
connection: PKG_FAIL, LOGIN_FAIL, LOGIN_COMPLETE.

int numreq (req-num, ids)
unsigned int reqnum; /* The number of OrglIDs requested */
unsigned int *ids; /* A pointer to sufficient space to
store the requested number of OrgIDs */
returns:
BAD_ARGUMENT - One of the input arguments didn’t
make sense. Generally this is a pointer being NULL
or a variable being out of reasonable range.
PKG_SEND_FAILURE - PKG software failed for the
specified connection
PKGWAIT FAILURE - PKG software failed to get an
expected response on the open connection
OVERRL - Request refused - more 0IDs were requested
than allowed during a single request '
OVERDL - Request refused - more 0IDs were requested
than allowed during a single day
OVERML - Request refused - more 0IDs were requested
than this 0S is permitted to own
REQFAIL - If the request failed for any one of many reasons
other than the ones mentioned above
num-ids - If successful, a positive number representing the
number of 0IDs granted is returned

This function allows the caller to get a number of OrgIDs. The number requested
is compared with the caller’s limits. Upon successful completion, this routine
returns the value 1, and the requested OrglDs are placed in the ids array. No
order can be assumed in the returned numbers. This routine does not return
until a response is obtained.

int set.status (ids, num, status)

unsigned int *ids; /* A pointer to the start of num ids */
int num; /* Number of entries in the ids array */
int status; /* A number indicating status of

this number or numbers */
returns:
BAD_ARGUMENT - One of the input arguments didn’t
make sense. Generally this is a pointer being NULL
or a variable being out of reasonable range.
PKG_SEND_FAILURE - PKG software failed for the
specified connection

14

PKGWAIT FAILURE - PKG software failed to get an
expected response on the open connection
REQ_SUCCESS - Request was successful

REQFAIL - Some problem was encountered and status
value not changed for any of the OrgID numbers

This routine allows the OS program to set the status of OrgIDs assigned to it.
Current status values are INACTIVE, ACTIVE, FREE. IDs are initially given a value
of INACTIVE when assigned to an OS. The OS must then use this function to
indicate those IDs that are issued to units by setting the status to ACTIVE.
When the OS no longer has any use for selected IDs, the status may be set to
FREE, thereby allowing the OIS to return them to the free list. Numbers less
than 8 million cannot be freed since these are pre-assigned to the various OSs.

This routine does not return until a response is obtained.

int ownerof (id, owner)
unsigned int id; /* An OrgID */
char *owner; /* The name of the 0S that owns
' this specified OrgID. */

returns:
BAD_ARGUMENT - One of the input arguments didn’t
make sense. Generally this is a pointer being NULL
or a variable being out of reasonable range.
PKG_SEND FAILURE - PKG software failed for the
specified connection
PKG WAIT FAILURE - PKG software failed to get an
expected response on the open connection
REQ_SUCCESS - Request was successful
REQ_FAIL - Some problem was encountered or couldn’t
find owner of this 0ID

This function allows the caller to determine the OS that is the owner of the
specified OrgID. The result is returned in the string owner that is supplied by

the caller. This routine does not return until a response is obtained.

int logout ()
returns:

BAD_ARGUMENT - One of the input arguments didn’t
make sense. Generally this is a pointer being NULL
or a variable being out of reasonable range.
PKG_SEND_FAILURE - PKG software failed for the
specified connection
PKGWAIT FAILURE - PKG software failed to get an
expected response on the open connection ,
LOGOUT.OK - Logout succeeded and connection broken

15

This function terminates the connection to the OIS.

4.2.5 OIS to OS Messages

The API functions generate messages that are sent to the OIS program via the PKG soft-
ware. PKG network transactions use the TCP protocol, which is a 100% reliable protocol;
therefore, no special coding is used to ensure successful transmission. Each user-generated
command elicits a response from the OIS. All commands and responses are of the form

KEYWORD [argl;arg2;...]

where we have a keyword followed by a ‘[’, and then zero or more arguments separated
by ¢’ and finally ending with a ‘]’. The details of each command and the expected response
are shown below.

COMMAND
LOGIN[uname;password]
RESPONSE
LOGIN[status]
where status may be either ACCEPTED or REFUSED.

COMMAND
NUM_REQ [number]
RESPONSE
NUM_RESP [number;0ID1;0ID2;...]

COMMAND

SET_STATUS [num;status;0ID1;0ID2;...]
RESPONSE

STATUS_UPDATED[]

In the NUM_RESP and SET_STATUS commands, the list of OrgIDs may use the repre-
sentation OID;~OID,, if a consecutive set of numbers happens to occur. Note, however, that
consecutive numbers are never guaranteed and certainly should not be expected.

COMMAND

OWNER_OF [UID]
RESPONSE

OWNER_IS [name;status]

COMMAND
LOGOUT[]

RESPONSE
GOOD_BY[]

16

5. Security Issues

In any client server system there are many opportunities for attack. Anderson [4] provides
representative samples. Most attacks are focused at the endpoints and do not directly attack
the encrypted messages passed back and forth. In this section we detail the actions taken
in both the OIS program and the application library to implement a security policy. Some
basic assumptions include that

o The server machine is secure both in a software and physical sense.
o The network is nonsecure.
o The security of the Organization Server is not the responsibility of the OIS.

e Data at the OIS is relatively nonvaluable compared to data in the OS.

The OIS software is composed of a C program that handles the networking connections
with the various OS programs and an Informix RDBMS, and a console interface that will
allow the OIS manager to both manage and monitor the OIS. The OIS server software
runs on Solaris 2.x UNIX operating systems, while the client libraries run on a variety of
operating systems. Attacks on the operating system, OS programs, or the Informix RDBMS
are beyond the scope of this project and are not considered further.

The network is clearly the most obvious avenue of attack if, for no other reason, it is
open to all the possible threats. Threats can literally be anyone—from hostile countries
or terrorists to curious high school students. Fortunately, the OIS operates on low value
data. Although OIS is crucial to the entire OrglD concept, the numbers themselves are
relatively unimportant. All the OIS program knows is which numbers are assigned to which
OS and whether they are active or not. There is no association of numbers with units.
Intercepting the data between the OIS and OS is of limited usefulness, so it is sufficient to
use a straightforward implementation of the Data Encryption Standard (DES) algorithm [5]
to encrypt all transactions between the OIS and OS programs.

The primary threats to the OIS are (1) denial-of-service and (2) a “spoofer” program to
falsely manipulate the OIS. If the OS can not obtain OrgIDs from the OIS when needed, then
the entire system fails. Such an attack is implemented by either overloading the physical
network or flooding the OIS with so many requests that authorized users cannot obtain
responses. A “spoofer” is a computer program that pretends to be a valid user. To address
the spoofer issues, a need to authenticate clients is required. Security in the client-server
model used in the OIS-OS system is provided by passwords and the limited number of legal
users. Successful entry into the OIS requires that a previously established password be used.
This password is then used to encrypt the entered password itself using the DES algorithms.
During the initial login procedure, the username is sent in the clear along with the encrypted
password. At the OIS, this password is decrypted using the stored password and they are
compared. A successful match constitutes a successful login, a session is established, and all
further transactions are encrypted using the user’s password.

17

Smartcard technology was considered, but the overhead required for physical management
of the smartcards was considered excessive. In addition, the possible access of the OIS
program by allied nations may cause difficulties. Since it is expected that OS programs will
connect to the OIS infrequently, it may be difficult to maintain synchronization with the
smartcards.

5.1 Network Transaction Security

Existing network and operating system security mechanisms are relied upon to provide a
secure base. A DES algorithm is used to encrypt all transactions between the OIS and OS,
except for the initial login request.

5.2 Data Storage Security

Data Storage at the OIS site is the responsibility of the Informix RDBMS. All Mission
Critical information, such as OrgID tables, usernames, and passwords, will be stored by the
RDBMS. These data will then be replicated using the Informix replication scheme to the
secondary OIS computer.

18

References

. Chamberlain, S. C. “Default Operational Representations of Military Organizations,”

ARL-TR-2172, U.S. Army Research Laboratory, Aberdeen Proving Ground, MD,
February 2000.

. Muuss, M. J., P. Dykstra, K. Applin, G. Moss, E. Davisson, P. Stay, and C. Kennedy.
“Ballistic Research Laboratory CAD Package, Release 1.21,” BRL Internal Publi-

cation, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD,
June 1987.

. Muuss, M. J. “Workstations, Networking, Distributed Graphics, and Parallel Process-

ing.” Computer Graphics Techniques: Theory and Practice, edited by D. F. Rogers
and R. A. Earnshaw, Springer-Verlag, 1990.

. Anderson, R. J. “Why Cryptosystems Fail.” Communications of the ACM, vol. 37,
no. 11, pp. 32-41, November 1994.

. Young, E. DES Library. ftp://ftp.psy.uq.oz.au/pub/Crypto/DES/, 1998.

19

INTENTIONALLY LEFT BLANK.

20

Appendix:

Sample Transaction Data

21

INTENTIONALLY LEFT BLANK.

22

In order to test the OIS, sample data were stored in the various tables and test client
programs were run. These clients attempted both successful and failed commands to verify
that the OrgID server software worked properly. This discussion is limited to the transaction
log because it records a summary of the messages sent to the OIS and the success codes.

The important data from the account table are shown in Table A-1. There are four users
in three different organizations. Notice that their limits are different.

Table A-1. Sample Account Data

Username | Org OrgID limits
ois_test ARMY | 50 | 1000 | ~-1°
client2 NAVY | 50 | 1000 -1¢
piggy USMC | 5 12 | 1000
megaman | USMC | 10 -1¢ 17

%A value of -1 means unlimited.

A portion of an actual transaction log is shown in Table A-2. (See Tables 5 and 6 for
details regarding the fields and their contents.) The first two transactions (25 and 26) are
both failed login attempts. The user nobody did not exist in the account table, resulting in
a success code of -1, while the user ois_test entered an incorrect password.

The third user, client2, successfully logged in later the same day. He requested 55
new OrglIDs, but was denied because he exceeded his transaction limit (which was 50). He
then asked for and received 5 OrglDs. While he was logged in, the user piggy logged in
(transaction 30) and requested some OrgIDs. His first request (for 17 OrgIDs) also exceeded
his transaction limit (5). He received 5 OrgIDs in two more transactions, but was denied
a third set of 5 because he would have gone over his daily limit (12). He logged out in
transaction 35. In a similar test, megaman logged in and requested 10 OrgIDs. A second set
of 10 was denied because it would have put him over his lifetime limit of OrgIDs (17).

After megaman logged out, client2 submitted some more transactions to the OIS. He
successfully freed 2 OrglDs, activated 2 more, and deactivated an OrgID in transactions
40-42. The next 3 transactions were activation requests that failed. A query of OrgID 3885
returned information, while a query of 39030 failed (the OrgID had not been allocated by
anyone). He logged out in transaction 48.

Several days later, client2 logged in again. Like before, he unsuccessfully requested 55
OrglDs, then asked for and received 5 OrgIDs. Before he could do anything else, he was
disconnected, as shown in transaction 52. Soon after that, the user ois_test logged in (with
the correct password this time). He successfully submitted several transactions and logged
out.

These tests have shown that all requests sent to the OIS are recorded properly. A careful
examination of the orgid and freeblocks tables (not shown here because of their size) confirmed
that the actions and results stored in the transaction table are correct.

23

Table A-2. Actual Transaction Log

recno | username | command | success | cmddate number
25 | nobody L -1 108/05/1999 | 933867435
26 | ois_test L -2 | 08/05/1999 | 933867436
27 | client2 L 1|08/05/1999 | 933873696
28 | client2 R -11 | 08/05/1999 55
29 | client2 R 5| 08/05/1999 5
30 | piggy L 1| 08/05/1999 | 933873697
31 | piggy R -11 | 08/05/1999 17
32 | piggy R 51 08/05/1999 5
33 | piggy R 51 08/05/1999 5
34 | piggy R -12 | 08/05/1999 5
35 | piggy T 1| 08/05/1999 | 933873697
36 | megaman L 1|08/05/1999 | 933873699
37 | megaman R 10 | 08/05/1999 10
38 | megaman R -13 | 08/05/1999 10
39 | megaman T 1{08/05/1999 | 933873699
40 client2 F 2 108/05/1999 2
41 | client2 A 21 08/05/1999 2
42 | client2 I 1 | 08/05/1999 1
43 | client2 A -1 | 08/05/1999 3
44 | client2 A -1 08/05/1999 1
45 | client2 A -1 {08/05/1999 1
46 | client2 Q 0 | 08/05/1999 3885
47 | client2 Q -1 {08/05/1999 39030
48 | client2 T 1 | 08/05/1999 | 933873707
49 | client2 L 1|08/20/1999 | 935157330
50 | client2 R -11 | 08/20/1999 55
51 | client2 R 5 | 08/20/1999 5
52 | client2 X 1| 08/20/1999 | 935157331
53 | ois_test L 1108/20/1999 | 935157336
54 | ois_test R 10 | 08/20/1999 10
55 | ois_test A 41 08/20/1999 4
56 | ois_test Q 0| 08/20/1999 3923
57 | ois_test T 1|08/20/1999 | 935157337

24

API
ARL
BRL
DES
ESQL
IP
OIS
OrgID
0S
RDBMS
SQL
TCP

List of Abbreviations

Application Program Interface

Army Research Laboratory

Ballistic Research Laboratory

Data Encryption Standard

Embedded Structured Query Language
Internet Protocol

Organization ID Server

Qrganizational Identifier
Organizational Server

Relational Data Base Management System
Structured Query Language

Transport Control Protocol

25

INTENTIONALLY LEFT BLANK.

26

NO. OF
COPIES

2

ORGANIZATION

DEFENSE TECHNICAL
INFORMATION CENTER
DTIC OCA

8725 JOHN J KINGMAN RD
STE 0944

FT BELVOIR VA 22060-6218

HQDA
DAMO FDT

400 ARMY PENTAGON
WASHINGTON DC 20310-0460

0SD
OUSD(A&T)/ODDR&E(R)

DR R J TREW

3800 DEFENSE PENTAGON
WASHINGTON DC 20301-3800

COMMANDING GENERAL
US ARMY MATERIEL CMD
AMCRDA TF

5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

INST FOR ADVNCD TCHNLGY
THE UNIV OF TEXAS AT AUSTIN

' 3925 W BRAKER LN STE 400

AUSTIN TX 78759-5316

DARPA

SPECIAL PROJECTS OFFICE
JCARLINI

3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

US MILITARY ACADEMY
MATH SCI CTR EXCELLENCE
MADN MATH

MAJHUBER

THAYER HALL

WEST POINT NY 10996-1786

DIRECTOR

US ARMY RESEARCH LAB
AMSRL D

DR D SMITH

2800 POWDER MILL RD
ADELPHI MD 20783-1197

27

NO. OF
COPIES

ORGANIZATION

DIRECTOR

US ARMY RESEARCH LAB
AMSRL CI AIR

2800 POWDER MILL RD
ADELPHI MD 20783-1197

DIRECTOR ‘

US ARMY RESEARCH LAB
AMSRL CILL

2800 POWDER MILL RD
ADELPHI MD 20783-1197

DIRECTOR

US ARMY RESEARCHLAB
AMSRL CIIST

2800 POWDER MILL RD
ADELPHI MD 20783-1197

ABERDEEN PROVING GROUND

DIR USARL
AMSRL CILP (BLDG 305)

NO. OF

COPIES

ORGANIZATION

1

10

10

DUSA OR

W HOLLIS

102 ARMY PENTAGON

RM 2E660

WASHINGTON DC 20301-0102

DIRECTOR RESEARCH
OASD C3I

RM 3E172

THE PENTAGON
WASHINGTON DC 20301-6000

HQDA ODISC4

SAIS PAA S RM 1C634

B HABERCAMP

100 ARMY PENTAGON
WASHINGTON DC 20310-0107

DIRECTOR TPIO ABCS

ATZL TP

415 SHERMAN AVE

FT LEAVENWORTH KS 66027-2300

TSM MCS/GCCS A
ATZL TSM

USA COMBINED ARMS CENTER
415 SHERMAN AVE UNIT 5

FT LEAVENWORTH KS 66027

TSM ASAS USAIC
ATZS AS
FT HUACHUCA AZ 85613-6000

TSM CSSCS USACASCOM
ATCL K

2521 A AVE

BLDG 11620

FT LEE VA 23801-1701

TSM FATDS USAFAS
ATSF FSC 3
FT SILL OK 73503-5600

TSM FORCE XXI USAAC
ATZK XXI
FT KNOX KY 40121-5000

TSM SHORAD USAADAS
ATSA TSM SH
FT BLISS TX 79916-3802

TSM SOLDIER USAIC&S
ATZB TS '
FT BENNING GA 31905-5405

NO. OF
COPIES

ORGANIZATION

28

2

TSM NM USASC
ATZH NM
FT GORDON GA 30905-5000

TSM WIN T USASC
ATZH WT
FT GORDON GA 30905-5000

'COMMANDER USAAVNC

ATZQ CDO
STALLSMITH

L AVE BLDG 513

FT RUCKER AL 36362

DIRECTOR TPIO SE

ATZL NSC TP

410 KEARNEY AVE

FT LEAVENWORTH KS 66027-1306

DIRECTOR TPIO TD
ATSE TPIO
USAES

FT LEONARD WOOD MO 65473-8929

COMMANDER USACAC

ATZL CG

415 SHERMAN AVE

FT LEAVENWORTH KS 66027-2300

HQ TRADOC
ATCD ZA
FT MONROE VA 23651

HQ TRADOC
ATCD ZC
FT MONROE VA 23651

HQ TRADOC
ATCD G
FT MONROE VA 23651

HQ TRADOC
ATCDF
FT MONROE VA 23651

USAFMSA RDD

MOFI FMR PT

415 SHERMAN AVE UNIT 7

FT LEAVENWORTH KS 66027-2300

USAFMSA RDD LEE

MOFI FMR L

700 QUARTERS RD SUITE 349
FT LEE VA 23801-1703

NO. OF
COPIES ORGANIZATION

NO. OF
COPIES ORGANIZATION

5

DIRECTOR FDD

ATCD F ‘

415 SHERMAN AVE

FT LEAVENWORTH KS 66027-2300

USAFMSA ADD

MOFI FMA

9900 BELVOIR RD SUITE 120
FT BELVOIR VA 22060-5578

USAFMSA IMD

MOFI ZC IM

401 ARMY PENTAGON
WASHINGTON DC 20310-0401

USAFMSA HQDA SPPT DIV
MOFI ZC SAM

401 ARMY PENTAGON
WASHINGTON DC 20310-0401

ARMY FORCE MGMT SCHOOL
5500 21ST ST SUITE 1400
FT BELVOIR VA 22060-5923

DIRECTOR

ARMY FORCE PROGRAMS
DAMO FDZ

RM 3A522

460 ARMY PENTAGON
WASHINGTON DC 20310-0460

DIRECTOR C2D
AMSEL RD C2 D
FORT MONMOUTH NJ 07703

US ARMY CERDEC

AMSEL RD C2 O SS
NIEMELA

FORT MONMOUTH NJ 07703

US ARMY CERDEC

AMSRL ST DD

SALIS

FORT MONMOUTH NJ 07703

PEO C38

SFAE C3S

BG BOUTELLE

MYER CENTER

FT MONMOUTH NJ 07703

PEO C38

SFAE C3S HTI
CARNEVALE

MYER CENTER

FT MONMOUTH NJ 07703

29

2

PM ATCCS

SFAE C3S AT

MYER CENTER

FT MONMOUTH NJ 07703

PM ATCCS CS

SFAE C3S AT CS

D USECHAK

MYER CENTER

FT MONMOUTH NJ 07703

PM MCS
SFAE C3S AT MCS
FT MONMOUTH NJ 07703

PEO C3S TOC AMDCCS
SFAE C3S AD
REDSTONE ARSENAL AL 35898

PM STCCS

SFAE C3S STR

6052 MEADE RD SUITE 101
FORT BELVOIR VA 22060-5260

PM INTEL FUSION
SFAE C3S INT

1616 ANDERSON RD
MCLEAN VA 22102-1616

PM FBCB2

SFAE C3S AP

BLDG 2525

FT MONMOUTH NJ 07703

PM FATDS

SFAE C3S FS

BLDG 457

FT MONMOUTH NJ 07703-5404

PM FATDS

SFAE C3S FS TMD

SAPHOW

BLDG 457

FT MONMOUTH NJ 07703-5404

PMWINT
SFAE C3S WIN
FORT MONMOUTH NJ 07703

NO. OF
COPIES

ORGANIZATION

DIRECTOR ADO

DAMO ADO

LEVINE

400 ARMY PENTAGON
WASHINGTON DC 20310-0400

COMMANDER USAREUR&7 ARMY
AEACG

GEN MEIGS

APO AE 09014

HQ USJFCOM
DCINC

LTG BURNETTE
1562 MITSCHER AVE
NORFOLK VA 23551

COMMANDER USAF AC2ISRC
CCT

BARRINGER

130 ANDREWS ST SUITE 216
LANGLEY AFB VA 23665

NAVY WARFARE DEV CMD
CODE N341

LCDR ESPE

686 CUSHING RD
NEWPORT RI 02841

NAVAL POSTGRADUATE SCHOOL
CODE SM/HH

CDR HATCH

555 DYER RD RM 236

MONTEREY CA 93940-5103

SPACE AND NAVAL WARFARE
SYSTEMS CENTER

LES ANDERSON D4123

53560 HULL ST

SAN DIEGO CA 92152-5001

C A DEFRANCO JR PE
AFRL IFSA

525 BROOKS RD SUITE 1015
ROME NY 13441-4505

J SALTON
SFAE C3S FIO
FT MONMOUTH NJ 07703

USA LOG INTEGRATION AGENCY
LOIA CD

M BLACKMAN

5001 EISENHOWER AVE
ALEXANDRIA VIRGINIA 22333-0001

NO. OF
COPIES

ORGANIZATION

30

2

18

HQDA ODCSLOG

DALO PL

COL STINE

500 ARMY PENTAGON
WASHINGTON DC 20301-0500

INST FOR DEFENSE ANALYSIS
DR F LOAIZA
1801 N BEAUREGARD ST

- ALEXANDRIA VA 22311

H LAVENDER
AMERIND INC

1310 BRADDOCK PL
ALEXANDRIA VA 22333

COL DAVE MEASELS RET
SAIC

MS381

1710 GOODRIDGE DR
MCLEAN VA 22102

T CAHILL

COMPUTER SCIENCES CORP

1301 VIRGINIA DR 1ST FLOOR
FORT WASHINGTON PA 19034

COL J BESSLER RET
SPRINT

MS KSOPARO0301

10895 GRANDVIEW
OVERLAND PARK KS 66210

ABERDEEN PROVING GROUND

DIR USARL
AMSRL CI
DR N RADHAKRISHNAN
DR J GANTT
AMSRL CI C
DR J GOWENS
AMSRL CI CT
DR J BRAND
F BRUNDICK (5 CPS)
DR S CHAMBERLAIN
G HARTWIG (5 CPS)
DR R HELFMAN
H INGRAM
M LOPEZ

NO. OF)
COPIES ORGANIZATION

MEMBERS OF TTCP C31 GROUP TP-10

2 MR JOHN LAWS CHAIRMAN
CIS SYSTEMS DEPT
DEFENCE EVALUATION &
RESEARCH AGENCY
ST ANDREWS RD
MALVERN WORCS WR14 3PS

2 MR JOHN TINDLE UK NATL LDR
CIS SYSTEMS DEPT
DEFENCE EVALUATION &
RESEARCH AGENCY
ST ANDREWS RD
MALVERN WORCS WR14 3PS

2 DR JOHN ROBINSON CA NATL LDR
COMMUNICATIONS RESEARCH
CENTRE CRC CANADA
3701 CARLING AVE
BOX 11490 STATION H
OTTAWA K2H 8S2
CANADA

2 DR ALLAN GIBB CA ARMY MBR
INFORMATION SYSTEMS
TECHNOLOGY SECTION
DREV 2459 PIE XI NORTH BLVD
CP 8800 VAL BELAIR X4683
QUEBEC G3J 1X5
CANADA

2 DR IAIN MACLEOD AU NATL LDR
DSTO C3 RESEARCH CENTER
FERN HILL PARK
DEPT OF DEFENCE
CANBERRA ACT 2600
AUSTRALIA

31

INTENTIONALLY LEFT BLANK.

32

REPORT DOCUMENTATION PAGE OMB Ne 0708 0188

Public reporting burden for this of is d to 1 hour per the time for g Il data
gathering and maintaining the data needed, and and g the of Send g g this burden or any other aspect of this
ion of suggestions for reducing this burden, to W. ¢ Services, Di for Inf (o] and Rep 1215 Jeff
Davis Hi ulite 1204, Arlington, VA 22202-4302, and to the f Management and Budget, Paperwork Reduction Project{0704-0188). Washington. 20503,
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
June 2001 Final, February 1999 - August 1999
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
A Primary Server for Organizational Identifiers P611102AH48

6. AUTHOR(S)
Frederick S. Brundick and George W. Hartwig, Jr.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
U.S. Army Research Laboratory REPORT NUMBER
ATTN: AMSRL-CI-CT ARL-TR-2530

Aberdeen Proving Ground, MD 21005-5067

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES) 10.SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (Maximum 200 words)

This report describes the design and implementation of an organizational identifier server (OIS). This server is the
top level of a hierarchy to assign and maintain a list of unique identifiers for Department of Defense (DOD)
organizations. These OrgID numbers are designed to provide a uniform means for digital computers to reference DOD
organizations. The OIS accepts requests for OrglDs from organization servers (OS) and generates sets of unique
numbers in response. The OIS also acts as a directory for assigned numbers. OS programs may query the OIS as to
who owns a particular OrgID, and the OIS will respond with the name of the OS that was assigned the particular OrgID
and its current status.

14. SUBJECT TERMS 15. NUMBER OF PAGES
database, enterprise key, organizational identifier 34
18. PRICE CODE

[17. SECURITY CLASSIFICATION] 8. SECURITY CLASSIFICATION 18, SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT |
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

33 Prescribed by ANSI Std. 238-18 298-102

INTENTIONALLY LEFT BLANK.

34

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to
the items/questions below will aid us in our efforts.

1. ARL Report Number/Author__ ARL-TR-2530 (Brundick) Date of Report_June 2001

2. Date Report Received

3. Does this report satisfy aneed? (Comment on purpose, related project, or other area of interest for which the report will be
used.)

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs
avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization,
technical content, format, etc.)

Organization

CURRENT Name E-mail Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

7. I indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old or
Incorrect address below.

Organization

OLD Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

DEPARTMENT OF THE ARMY

OFFICIAL BUSINESS

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 0001, APG, MD

POSTAGE WILL BE PAID BY ADDRESSEE

DIRECTOR

U.S. ARMY RESEARCH LABORATORY

ATTN AMSRL CICT

ABERDEEN PROVING GROUND MD 21005-5067

NO POSTAGE
NECESSARY
IF MAILED
INTHE
UNITED STATES

